
A SOFTWARE DEFINED RADIO APPLICATION UTILIZING MODERN FPGAS AND NOC
INTERCONNECTS

Graham Schelle, Jeff Fifield, and Dirk Grunwald

Dept. of Computer Science
University of Colorado at Boulder

Boulder, CO
email: schelleg,fifield,grunwald@cs.colorado.edu

ABSTRACT
Network on Chips are becoming a common onchip intercon-
nect for both FPGA and mainstream processor designs. At
the same time, software defined radios (SDR) are a new ap-
plication field that is gaining much attention. As SDR tasks
are mapped onto Network on Chip architectures, the typi-
cally streaming nature of samples will stress the NoC itself
and possibly hurt the performance of other applications us-
ing that NoC. In this paper, we present the results of our
partitioning and placement of a SDR transmitter onto a NoC
architecture using an FPGA. We use a 802.11a transmitter
example partitioned across a NoC and compare it to a hand-
crafted design. Additionally, various placement schemes,
runtime architecture loads and NoC access methods are ex-
amined to determine the feasibility of this application and
architecture combination.

1. INTRODUCTION

Network on Chip Architectures are gaining momentum as
the new onchip interconnect for processors (both mainstream
and embedded processors). Intel recently prototyped a 80-
core processor that contained a network on chip with a mesh
topology. In the embedded world, IP reuse, bus scaling con-
cerns, and power constraints have led to network on chip
interconnects as well [1, 2]. FPGA designs benefit from a
NoC architecture on top of reconfigurable logic as a method
to support reusable IP blocks. NoCs on FPGAs also allow
scalable designs when bus-based architectures fail to meet
performance constraints.

At the same time, the processing power of general pur-
pose computing platforms has increased to the point where
it is possible to perform digital signal processing in soft-
ware or, as in our case, in reconfigurable hardware. This
has led to an increasing interest in software defined radio
(SDR) and cognitive radio technologies. Today most imple-
mentations of software defined radios use some combination
of general purpose processors, FPGA accelerators and digi-
tal signal processors connected together using custom hard-

ware. The abstraction provided by a NoC can benefit SDR
implementations by providing a standardized, scalable and
reconfigurable interconnection mechanism.

In this work, we demonstrate an example combination
of a NoC architecture combined with a SDR task to show
the challenges and advantages of this platform. We focus
on throughput loss due to the overhead of the Network on
Chip, including resource usage of a modern FPGA. We also
highlight the benefits of an application partitioned over the
NoC on a FPGA, allowing for exploration of the best NoC
configuration and application combination.

While various work has placed SDR designs onto FP-
GAs, to our knowledge, no attempt of placing SDR tasks
using a NoC exists. In the past, FPGAs have been ill-suited
for these applications, with needed components consuming
large amount of logic. Specifically, NoCs require a large
amount of buffering in the form of FIFOs while SDR appli-
cations require multipliers. Multipliers and FIFOs typically
take up large amounts of logic resources, but modern FP-
GAs have embedded cores to handle those tasks. We exam-
ine how these architectural improvements of FPGAs benefit
a SDR/NoC combination to push FPGAs as a platform for
this application domain.

The main contributions of this paper are described be-
low:

• Provide an example partitioning of a SDR task onto a
NoC architecture.

• Show how modern FPGAs are more able to support
NoC architectures and SDR applications with addi-
tions of embedded cores and FPGA architectural im-
provements.

• Examine the advantages and challenges of meeting
performance constraints in a 802.11a example on a
chip with multiple allocation possibilities.

• Examine how competing applications running in par-
allel with an SDR application can hurt performance
and how this performance loss can be minimized.

1-4244-1060-6/07/$25.00 ©2007 IEEE. 177

Authorized licensed use limited to: University of Florida. Downloaded on March 3, 2009 at 17:56 from IEEE Xplore. Restrictions apply.

This paper is organized as follows: Section 2 discusses
work related to this research. The 802.11a application and
architectures are described in section 3. Performance results
are discussed in section 4 followed by conclusions.

2. RELATED WORK

We are focusing on an application space (software defined
radio) tied to a specific architecture for onchip communica-
tion (Network on Chip). There is no work that we are aware
of that focuses on these two areas combined, but there is
a good amount of related work on each individual research
area. We highlight the research efforts that guided our ef-
forts and gave insight into how to combine SDR and NoC
architectures effectively.

There have been a number of FPGA and software so-
lutions reported for software defined radio and OFDM sys-
tems. Cummings [3] and Reed [4] report on the architecture
of FPGAs and the general applicability of FPGAs to soft-
ware defined radio.

Work by Dick [5] demonstrated an OFDM physical layer
implemented in an FPGA. Their design implements OFDM
modulation/demodulation and receiver synchronization al-
gorithms for 802.11a. As in this work, the Simulink and
System Generator toolkits were used as fast implementation
tools.

The WARP project [6] is another FPGA based platform
for software defined radio. The project has chosen OFDM
as the physical layer of choice, and they have implemented
a full OFDM transmit and receive chain in the FPGA. They
also make use of the PowerPC processors embedded in the
Xilinx FPGAs. The WARP platform is programmed using
Simulink and System Generator.

NoC architectures exist in a variety of forms support-
ing various processing elements. The RAW project [7] is
an excellent example of standard processors communicat-
ing to each other onchip over a NoC. RAW used a variety
of communication NoCs depending on the the proximity of
the communication, giving dedicated bandwidth for neigh-
boring tiles to use for communicating. Register mapping of
the network interfaces into the processors allowed quick and
easy interfacing to the communication medium.

Additionally, the PACT XPP architecture [8] utilized spe-
cialized processors connected by a NoC. The processors were
most interesting here, reconfiguring themselves to a variety
of processing models, but does use a communication net-
work.

3. SOFTWARE DEFINED RADIO APPLICATION:
802.11A TRANSMITTER

In this section, we describe the two versions of a 802.11a
transmitter that we created. One version is a handcrafted

802.11a transmitter that is made as a standalone FPGA de-
sign. Another version of the 802.11a transmitter is created
and partitioned into 4 components; components that can be
swapped out for various software defined radio functional-
ity.

3.1. IEEE 802.11a

The IEEE 802.11a standard defines a physical layer based
on orthogonal frequency division multiplexing (OFDM) for
wireless networking in the 5GHz band [9]. IEEE 802.11g
uses essentially the same physical layer for wireless net-
working in the 2.4GHz band. In OFDM systems, the data to
be transmitted is split up into some number of parallel data
streams which we will call subcarriers. These subcarriers
are individually modulated at a low rate using modulation
techniques such as phase shift keying (PSK) and quadra-
ture amplitude modulation (QAM). A vector consisting of
one modulated symbol from each of the subcarriers defines
a frequency domain OFDM symbol. The inverse FFT op-
eration is performed on the frequency domain symbols to
transform them into time domain OFDM symbols for trans-
mission over the air. Although the subcarriers are individ-
ually carrying data at a low rate, the aggregate throughput
of all subcarriers can be high. By using the Fourier trans-
form, the subcarriers are placed very close together with no
interference between them.

After detecting a transmission and aligning itself to the
stream of incoming OFDM symbols, the receiver recovers
the original data by reversing the operations of the trans-
mitter. Incoming time domain OFDM symbols are trans-
formed into frequency domain symbols using the FFT op-
eration. Then the modulated subcarriers are extracted from
the OFDM symbols and demodulated to recover the original
bits.

3.2. Handcrafted transmitter architecture

We have created a standalone FPGA design implementing
a general purpose OFDM transmitter for software defined
radio[10]. The design supports basic 802.11a/g transmission
and allows many of the OFDM parameters to be changed
dynamically. Using this transmitter, software running on
the FPGA (e.g. on a Microblaze tile) or on a host PC can
dynamically control the OFDM physical layer of the soft-
ware radio. This lets the radio use physical layers other than
802.11a, although we only generate 802.11a signals for this
work.

The modulator is organized as a pipeline with four stages.
In the first stage, control information and the data bits to
be transmitted are received from an application or medium
access control (MAC) layer. The control information sets
up the rest of the pipeline to appropriately process the data.
The second stage of the pipeline modulates the subcarriers

178

Authorized licensed use limited to: University of Florida. Downloaded on March 3, 2009 at 17:56 from IEEE Xplore. Restrictions apply.

OFDM Parameter Allowable Values
Sample Rate 80 MHz

Subcarrier Spacing .3125 MHz
Number of FFT Points 1 to 256

Number of Data Subcarriers 0 to 256
Number of Pilot Subcarriers 0 to 256

FFT symbol period 3.2 μs
Guard Interval Duration 0 to 3.2 μs
OFDM Symbol Duration 3.2 to 6.4 μs
Subcarrier Modulations BPSK, QPSK, 16-QAM, 64-QAM

Table 1. Software defined OFDM parameters

SOURCE

MODULATION

iFFT

SINK

BPSK, QPSK, 16-QAM, 64-QAM

HW (64 FFT Points)
SW (1-256 FFT Points)

Possible Configurations

Fig. 1. Partitioning of NoC design.

using the specified PSK or QAM scheme. During the third
pipeline stage, the inverse FFT transforms the data into time
domain OFDM symbols. Finally, the fourth pipeline stage
inserts a cyclic extension of the OFDM symbols to form
guard intervals between symbols. The resulting samples are
ready to be sent to the DAC. A summary of the configurable
parameters of the OFDM modulator are shown in Table 1.

3.3. NoC based transmitter architecture

We use the NoCem Network-on-chip emulation tool [11] to
create our NoC architecture on the FPGA. The NoC that we
create is an 8x8 mesh network with 2-lane virtual channels.
Connected to the NoC itself are the processing tiles with a
front end of an operating system bridge.

Also for this design, we partitioned the SDR task into 4
different tiles. Figure 1 shows the breakout of the compo-
nents. We partition the handcrafted design into components
that may exist on a variety of implemented platforms in the
future. These tiles include the signal generation source/sink,
a modulation block, and a Discrete Fourier Transform block.
The tiles’ functionality and implementations are described
here:

• Signal Generation Tile. The signal generator creates
and consumes samples for the rest of the application

(can act as a source and or a sink). This tile really
emulates both the application layer that would create
data bytes and the DAC (digital to analog converter)
that would consume time-domain signals.

• Modulation Tile. The modulation tile takes in control
information and data payload and emits modulated
data corresponding to individual OFDM subcarriers.
These subcarriers are modulated with the appropriate
PSK or QAM modulation schemes and organized ac-
cording to the 802.11a standard. The output of this
block can be used as the input to an inverse FFT tile.

• FFT Tile (HW). Using Xilinx’s Coregen, we are able
to wrap an inverse FFT and make it an allocatable re-
source attached to the Network on Chip. This block
uses clock enables to do flow control on the actual
FFT when the network is either not ready to inject
samples (empty ingress buffer) or collect samples (full
egress buffer). We use the pipelined, streaming I/O
version of the Xilinx Coregen FFT.

• FFT Tile (SW). This version of the FFT tile is actually
a Xilinx Microblaze that runs a software implementa-
tion of the inverse FFT. The Microblaze runs at 100
MHz and collects all the samples needed (64 samples)
before doing the transform.

For these experiments, we also created additional pro-
cessing tiles needed to setup and load the chip at runtime.
These tiles are:

• Allocation Tile. This tile is a Xilinx Microblaze tile
that initializes the other processing tiles with their ex-
ecution state. This state includes virtual table setup
at the executing processing tiles and executable iden-
tifiers. These identifiers are used to tell the SDR ap-
plication how to modulate the 802.11 packets. The
allocation tile is presented with a task list and places
those tasks on the chip.

• Exerciser Tile. The exerciser tile is a simple VHDL
block that generate packets in a set pattern. Each ex-
erciser is a simple state machine that communicates to
area exercisers creating congestion on the network on
chip. Each tile uses a random distribution of packet
arrival times to generate a specific load on the net-
work.

4. RESULTS

4.1. Development Software

For development, Xilinx’s ISE and EDK 8.2 tools were used.
We are currently using Mentor Graphic’s Modelsim 6.2b
for gathering simulation results. Hardware results are based
on the Nallatech XtremeDSP development kit containing a
Virtex-II Pro FPGA and the Xilinx ML505 Board containing
a Virtex-5 FPGA.

179

Authorized licensed use limited to: University of Florida. Downloaded on March 3, 2009 at 17:56 from IEEE Xplore. Restrictions apply.

Table 2. Component Size Reduction Virtex-II Pro versus
Virtex5 FPGA architectures.

Component V2P Logic
(reg/LUT)

V5 Logic
(reg/LUT)

Reduction

virtual chan-
nel 2-lane

624/766 90/170 86%/78%

virtual chan-
nel 4-lane

1,280/1,714 190/464 85%/73%

μBlaze tile 567/1,114 157/296 72%/73%
64-tap FFT 2,280/1,568 1,772/1,581 22%/-1%
256-tap FFT 3,475/2,281 2,590/2,403 25%/-1%

4.2. handcrafted versus NoC based implementations

The handcrafted design was verified and implemented on
the Nallatech XtremeDSP board. This design was verified
to have sent out a valid 802.11a frame using real hardware.

The NoC architecture, due to its size (a 8x8 mesh-topology
NoC) does not fit on current boards (a 3x3 mesh is possible
on the Xilinx ML505 platform containing a Virtex5 FPGA),
but we use a cycle accurate simulator to gather results for
that architecture. Its functionality was verified in simulation
against the handcrafted design.

4.3. FPGA overhead

The newest lines of FPGAs include various components that
greatly benefit NoC architectures and Software Defined Ra-
dios. Of course, with higher transistor densities, the amount
of programmable logic will increase, but we focus on dedi-
cated embedded cores here. Specifically, the Virtex-5 Fam-
ily of Xilinx FPGAs contain dedicated FIFO controllers and
DSP48E slices. As NoCs and packet switched networks
consist of a variety of FIFOs for packet storage, the FIFO
controllers greatly reduce logic usage. For Software Defined
Radio applications (even more appropriate – DSP applica-
tions), the dedicated DSP48E blocks on Virtex5 FPGAs help
in the discrete Fourier transform tasks. While the Virtex2
Pro has dedicated multipliers, the Virtex5 DSP48E’s hold
much more dedicated logic including a larger multiplier and
accumulation blocks. As FPGAs evolve, it is expected that
these DSP cores will grow even more complex to accommo-
date the digital signal processing markets.

We briefly list out the various size comparisons in ta-
ble 2 simply to show that FPGA architectures themselves
are increasing their ability to support this combination of ar-
chitecture and application. It is notable that the Virtex2 Pro
architecture uses 4-input LUTs as compared to the Virtex5
having a 6-input LUT.

Table 3. Comparing Performance of a software based FFT
and a hardware based FFT in the software defined radio ap-
plication.

SDR application sample rate (Msamples / second)
software iFFT 0.080
hardware iFFT 14.286

4.4. Performance Results

4.4.1. Software versus Hardware implementations of the FFT

We wanted to first see the feasibility of a software based
version of the FFT. From the results in table 3 it is clear
that a software FFT is only useful for “offline” tasks. By
offline, we are referring to packet creation that can be slowly
stored in a main memory before being sent into a DAC at
a later time. This is feasible, but not desirable in 802.11a
communications where delays in packet sending may lead
to timeouts.

It is important to see this performance hit which is caused
by the actual implementation of the partitioned application
(as opposed to NoC placement strategies). While software
might be more flexible than reconfigurable hardware, the
performance of software based applications on FPGAs can-
not meet the requirements of SDR applications (at least in
this one example). This should be expected, as SDR tasks
on mainstream processors only became a possibility once
processor clock speeds reached into the gigahertz with com-
plicated memory hierarchies, while FPGA based processors
currently are in the 100 MHz range. The remainder of the ar-
chitectures presented in this paper will utilize the hardware
version of the FTT.

4.4.2. Affect of Distance Between Partitioned Blocks

We wanted to determine if the Network on Chip had an ad-
verse effect on this applications performance due to distance
between partitioned blocks. Various placement schemes or
runtime state of the processing tiles could lead to placing
this particular SDR task at non-adjacent tiles. Interestingly,
when the SDR application is the only application running
on chip (all other processing tiles are idle), the NoC acts as
a natural pipeline, holding samples in the NoC itself as pro-
cessing occurs. There is no performance decrease when the
application is placed onchip at any distance apart. With this
observation, we then wanted to examine the SDR applica-
tion running in parallel with other applications.

4.4.3. Affect of Parallel Processing and Competing Appli-
cations for NoC Resources

We are emulating a 64 node NoC, where the actual SDR
application only consumes 4 processing tiles. It would seem

180

Authorized licensed use limited to: University of Florida. Downloaded on March 3, 2009 at 17:56 from IEEE Xplore. Restrictions apply.

5 10 2015
0

2

4

6

8

10

12

14

16

0 5 10 15 20

of SDR instances

M
eg

as
am

p
le

s
/ s

ec
o

n
d

distance scheduling

random scheduling

Fig. 2. As more instances of the application are placed
onchip, performance declines as competition for NoC in-
creases. Two scheduling policies are examined.

intuitive that other applications may be also running onchip
in parallel with the SDR application. Figure 2 shows the
performance that can be sustained with multiple instances
of the application running in parallel.

We show two scheduling policies in this figure. Ran-
domly allocating instances of the SDR application leads to
higher contention onchip. Distance scheduling is done by
placing the applications close together onchip minimizing
communication costs and contention.

There is a reasonable performance hit on a per-instance
basis of the SDR application once packets start contending
for resources. Whereas previously, the SDR task could treat
the NoC as a natural pipeline, those semantics are broken
once other applications compete for that pipeline. This com-
petition occurs as the applications compete for virtual chan-
nels and router switch allocation.

4.4.4. NoC Datawidth Configuration Effect on SDR Perfor-
mance

With a HW iFFT and a distance-based scheduling algorithm,
we next examined how the NoC could best be configured to
handle this specific SDR application and its dataflow pat-
terns. The initial NoC had a 8b datawidth, which is 1/4 of
the resulting sample size (16b imaginary and 16b real com-
ponent of sample). By increasing the NoC datawidth to 32b,
we are able to better push samples through the network with-
out any resizing tasks. 4 placements are examined (see fig-
ure 3) that while the task is placed tightly in a cluster, there
still will be contention for NoC resources. Figure 4 shows
the comparison of these datawidths where the NoC is being
accessed in parallel by competing applications. We show a
loading of 0-20% on the network while an SDR application
executes.

2

4

3

1

Fig. 3. The 4 placements on a 8x8 NoC that will be used
to show how the SDR application performs under various
NoC load conditions . Placement 1 (in the lower left cor-
ner) will have much less contention for NoC resources than
placement 4 (located in the middle of NoC).

4.4.5. Streaming Interface Addition to NoC Access Points

Our final and last improvement to the NoC bottleneck in
streaming performance was to add a streaming interface to
the NoC access point. This access point takes advantage of
the virtual channel implementation of the Network on Chip
in order to secure a dedicated path through the network uti-
lizing 1 of the 2 virtual channels at each physical link. No
modifications were made to the NoC itself and due to the up-
down routing protocol within the network, deadlock avoid-
ance is still maintained. Table 4 shows that the streaming
interface to the NoC provides roughly 50 megasamples per
second of throughput for the SDR application with any of
the four placements shown previously in figure 3. While
we measured the applications running across all NoC load-
ing scenarios as previously shown in figure 4, regardless of
the placement or loading scenario each scenario resulted in
49-51 megasample per second throughput. This improve-
ment to the packet based interface of the NoC clearly had
the largest affect on performance.

4.5. Results Summary

From these incremental improvements to the NoC architec-
ture, it is very clear that an FPGA-based Network on Chip
can support streaming software defined radio applications.
Using an FPGA allowed for the NoC, the NoC access point
and the actual processing elements to be configured cor-
rectly. In a non-reconfigurable environment, none of this
would not be possible, leaving designers a much small ar-
chitectural search space.

Interestingly, all these numbers are based on a 100 MHz
clockrate, which meets timing constraints using this NoC

181

Authorized licensed use limited to: University of Florida. Downloaded on March 3, 2009 at 17:56 from IEEE Xplore. Restrictions apply.

NoC 16b Datapaths

6

8

10

12

14

16

18

20

0 5 10 15 20

Network Load (%)

M
eg

as
am

p
le

s
/ s

e c
o

n
d

arch1

arch2

arch3

arch4

NoC 8b Datapaths

6

8

10

12

14

16

18

20

0 5 10 15 20

Network Load (%)

M
eg

as
am

p
le

s
/ s

ec
o

n
d

arch1

arch2

arch3

arch4

NoC 32b Datapaths

6

8

10

12

14

16

18

20

0 5 10 15 20

Network Load (%)

M
eg

as
am

p
le

s
/ s

ec
o

n
d

arch1

arch2

arch3

arch4

NoC 8b Datapaths

6

8

10

12

14

16

18

20

0 5 10 15 20

Network Load (%)

M
eg

as
am

p
le

s
/ s

ec
o

n
d

arch1

arch2

arch3

arch4

5 1510 20 5 1510 20

NoC 16b Datapaths

6

8

10

12

14

16

18

20

0 5 10 15 20

Network Load (%)

M
eg

as
am

p
le

s
/ s

ec
o

n
d

arch1

arch2

arch3

arch4

5 1510 20

Fig. 4. Increasing datapath size to match sample size across various network loads. The arch1-4 labels refer to the placement
location shown in figure 3

Table 4. The 32b datapath NoC with a streaming interface
to the actual processing elements in the SDR application.
The arch1-4 labels refer to the placement location shown in
figure 3

Architecture sample rate (Msamples per second)
arch1 50.50
arch2 50.44
arch3 50.23
arch4 50.32

architecture (observed in timing analysis of a 2x2 design),
and is a clockrate provided on several Xilinx platform FPGA
boards. We hope to implement this design on larger Virtex-5
boards and use a higher clockrate to meet the 80 megasam-
ple / second threshold for 802.11a communication.

5. CONCLUSIONS

In this paper, we have presented a software defined radio
application mapped onto a Network on Chip. Taking ad-
vantage of FPGA architectural improvements, NoC archi-
tectures are more easily placed onto FPGAs and better use
platform resources. While the challenges of efficiently us-
ing the NoC on these streaming applications was also ex-
amined, we found and explored several improvements that
take advantage of reconfigurable hardware. With applica-
tions competing for NoC resources, it will be very important
to have configurable processing tiles, freedom to reconfigure
the network, and the ability to access the NoC in a streaming
manner.

6. REFERENCES

[1] W. J. Dally and B. Towles, “Route packets, not wires: on-
chip interconnection networks,” in Proceedings of the Design

Automation Conference, Las Vegas, NV, June 2001, pp. 684–
689.

[2] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg,
M. Millberg, and D. Lindqvist, “Network on chip: An
architecture for billion transistor era,” in Proceeding of
the IEEE NorChip Conference, November 2000. [Online].
Available: citeseer.ist.psu.edu/hemani00network.html

[3] M. Cummings and S. Haruyama, “FPGA in the software ra-
dio,” in IEEE Communications Magazine, 1999, pp. Vol. 37,
pp.108–112.

[4] J. H. Reed, Software Radio: A Modern Approach to Radio
Engineering. Prentice Hall, 2002.

[5] C. Dick and F. Harris, “FPGA implementation of an OFDM
PHY,” in Signals, Systems and Computers, 2003. Conference
Record of the Thirty-Seventh Asilomar Conference on, vol. 1,
9-12 Nov. 2003, pp. 905–909Vol.1.

[6] R. University, “Warp - wireless open-access research plat-
form,” http://warp.rice.edu/.

[7] M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat,
B. Greenwald, H. Hoffman, P. Johnson, J.-W. Lee, W. Lee,
A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen,
M. Frank, S. Amarasinghe, and A. Agarwal, “The raw mi-
croprocessor: a computational fabric for software circuits and
general-purpose programs,” in Micro, IEEE, vol. 22. IEEE
Computer Society Press, 2002, pp. 25–35.

[8] V. Baumgarte, G. Ehlers, F. May, A. N, M. Vorbach, and
M. Weinhardt, “Pact xpp: A self-reconfigurable data process-
ing architecture,” J. Supercomput., vol. 26, no. 2, pp. 167–
184, 2003.

[9] Wireless LAN medium access control (MAC) and physical
layer specifications: High speed physical layer in the 5 GHz
band, IEEE Std. 802.11a, 1999.

[10] J. Fifield, “A software defined ofdm modulator,” Master’s the-
sis, University of Colorado, Boulder, 2006.

[11] G. Schelle and D. Grunwald, “Onchip interconnect explo-
ration for multicore processors utilizing FPGAs,” in 2nd
Workshop on Architecture Research using FPGA Platforms,
2006.

182

Authorized licensed use limited to: University of Florida. Downloaded on March 3, 2009 at 17:56 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

